
Internet
ofthings

Designing the

Adrian McEwen & Hakim Cassimally

PROTOTYPING
ONLINE
COMPONENTS

YOU SAW IN Chapter 2, “Design Principles for Connected Devices”, how Internet
of Th ings devices are “magical” objects: a physical thing with an embedded control-
ler and sensors that allow it to do clever things that a merely solid or mechanical
object couldn’t. Even with just these two components, you can already see some
magical objects, such as air fresheners that pump fragrance into the room only
when they sense that someone has walked past. But the phrase “Internet of Th ings”
does suggest that the Internet is also part of the equation.

You can easily see that each component has a critical part to play. Th e physi-
cal, designed object ties into the design principles (as you saw in Chapter 2) of
context, glanceability, and so on. Th e controller and associated electronics allow it to
sense and act on the real world. Th e Internet adds a dimension of communication.
Th e network allows the device to inform you or others about events or to gather
data and let you act on it in real time. It lets you aggregate information from
disparate locations and types of sensors. Similarly, it extends your reach, so you
can control or activate things from afar, and it allows the online world to bleed out
into the physical realm in new and interesting ways.

7

11_9781118430620-ch07.indd 17311_9781118430620-ch07.indd 173 10/9/13 11:02 AM10/9/13 11:02 AM

174 Designing the Internet of Things

The key components of the Internet of Things.

So, sensor devices which record temperature might write that data to Xively.
Notifi cation devices like Bubblino blow bubbles in response to tweets on
Twitter. In fact, although you have seen in Chapter 2 that one design
principle is that Th ings should be “fi rst class citizens” of the Internet, they do
seem to be currently tied to particular websites or services. Th ere is a good
reason for this: unlike a general-purpose device, such as a computer, tablet,
or phone, the physical object is designed for a purpose and doesn’t necessar-
ily have a keyboard and screen to let it easily change its confi guration.

In the near future, devices will most likely use standardized protocols to speak
to each other and to other apps and computers on your local or personal
network. For now, though, in most of the examples we look at, each device is
tied to a single web service. Although you’ve looked at existing services
(Xively, Twitter), you might benefi t from creating your own. For a personal
project, creating such a service may not be important, but if you’re developing
a product to sell, you will want to be in control of the service—otherwise, you
may have to recall every device to reprogram any time it is discontinued,
changes terms and conditions, making your use of it abusive, or changes its
API, making your code stop working. In fact, even Bubblino runs via a
service at http://bubblino.com which allows users to customise their
Bubblino to search for particular words and gives Adrian the fl exibility to
route all the Bubblini to a diff erent service or API if anything changes.

GETTING STARTED WITH AN API
Th e most important part of a web service, with regards to an Internet of
Th ings device, is the Application Programming Interface, or API. An API is
a way of accessing a service that is targeted at machines rather than people.
If you think about your experience of accessing an Internet service, you
might follow a number of steps. For example, to look at a friend’s photo on
Flickr, you might do the following:

11_9781118430620-ch07.indd 17411_9781118430620-ch07.indd 174 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 175

 1. Launch Chrome, Safari, or Internet Explorer.
 2. Search for the Flickr website in Google and click on the link.
 3. Type in your username and password and click “Login”.
 4. Look at the page and click on the “Contacts” link.
 5. Click on a few more links to page through the list of contacts till you see

the one you want.
 6. Scroll down the page, looking for the photo you want, and then click

on it.

Although these actions are simple for a human, they involve a lot of looking,
thinking, typing, and clicking. A computer can’t look and think in the same way.
Th e tricky and lengthy process of following a sequence of actions and respond-
ing to each page is likely to fail the moment that Flickr slightly changes its user
interface. For example, if Flickr rewords “Login” to “Sign in”, or “Contacts” to
“Friends”, a human being would very likely not even notice, but a typical
computer program would completely fail. Instead, a computer can very happily
call defi ned commands such as login or get picture #142857.

MASHING UP APIS
Perhaps the data you want is already available on the Internet but in a form
that doesn’t work for you? Th e idea of “mashing up” multiple APIs to get a
result has taken off and can be used to powerful eff ect. For example:

◾ Using a mapping API to plot properties to rent or buy—for example,
Google Maps to visualise properties to rent via Craigslist, or Foxtons in
London showing its properties using Mapumental.

◾ Showing Twitter trends on a global map or in a timeline or a charting API.
◾ Fetching Flickr images that are related to the top headlines retrieved

from Th e Guardian newspaper’s API.

Do You Need a Full API?
For a personal project, you may be best off starting by targeting an existing
service, such as Twitter or Xively, as mentioned already, or Transport for
London’s Rental Bike availability API, or mapme.at.

Perhaps, as with Bubblino, you will expand that service later to a simple
confi guration and wrapping API. But if the data you want to interact with
doesn’t yet exist, this may represent an opportunity to create a new service that
could be generally useful.

11_9781118430620-ch07.indd 17511_9781118430620-ch07.indd 175 10/9/13 11:02 AM10/9/13 11:02 AM

176 Designing the Internet of Things

Some of the more visible and easy-to-use APIs want to embed your data
within them—for example, the Google Maps API. Th is means that they are
ideal to use within a web browser, but you aren’t in control of the fi nal
product, and there might be limited scope for accessing them from a
microcontroller.

SCRAPING
In many cases, companies or institutions have access to fantastic data but
don’t want to or don’t have the resources or knowledge to make them
available as an API. While you saw in the Flickr example above that getting
a computer to pretend to be a browser and navigate it by looking for UI
elements was fragile, that doesn’t mean that doing so is impossible. In
general, we refer to this, perhaps a little pejoratively, as “screen-scraping”.
Here are a few examples:

◾ Adrian has scraped the Ship AIS system (www.shipais.com/, whose
data is semi-manually plotted by shipping enthusiasts) to get data about
ships on the river Mersey, and this information is then tweeted by
the @merseyshipping account (www.mcqn.com/weblog/
connecting_river_mersey_twitter). He says of the project
that it is a way to “connect the river to the Internet”, so although this
doesn’t have an Internet-connected “thing” as such, it arguably enters
into the realm of the Internet of Th ings.

◾ Th e Public Whip website (www.publicwhip.org.uk/) is made
possible by using a scraper to read the Hansard transcripts of UK
government sessions (released as Word documents). With the resultant
data, it can produce both human- and machine-readable feeds of how
our elected representatives vote.

◾ As well as other tools for working with data online, the ScraperWiki site
(https://scraperwiki.com) has an excellent platform for writing
scrapers, in a number of dynamic programming languages, which
collate data into database tables. Eff ectively, it provides infrastructure
for “Mechanize” scripts that you could run on your own computer or
server but allows you to outsource the boring, repetitive parts to
ScraperWiki. Th eir CEO, Francis Irving, used this for an Internet of
Th ings project of his own. He scrapes the Liverpool council website
page to fi nd out when his recycling bin is due to be collected. His
Binduino device (https://github.com/frabcus/binduino),
an Arduino plus custom electronics, checks the result regularly and
illuminates some electroluminescent wire to make his recycling bin
glow when he needs to take it out.

11_9781118430620-ch07.indd 17611_9781118430620-ch07.indd 176 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 177

LEGALITIES
Screen-scraping may break the terms and conditions of a website. For
example, Google doesn’t allow you to screen-scrape its search pages but does
provide an API. Even if you don’t think about legal sanctions, breaking the
terms and conditions for a company like Google might lead to its denying
you its other services, which would be at the very least inconvenient.

Other data is protected by copyright or, for example, database rights. One
project we discussed for the book would be a scraper that read football
fi xtures and moved a “compass” to point to the relative direction that your
team was playing in. However, certainly in the UK, fi xtures lists are copy-
righted, and the English and Scottish football leagues have sued various
operators for not paying them a licensing fee for that data (http://www.
out-law.com/page-10985). For a personal pet project, creating such a
scraper shouldn’t be a huge issue but might reduce the viability of a commer-
cial product (depending on whether the licensing costs are sensible business
costs or prohibitive).

Alternative sources of information oft en are available. For example, you
could use OpenStreetMap instead of Google Maps. Th e UK postcode
database is under Crown Copyright, but there are other, perhaps partial,
crowdsourced versions.

For additional discussions about the legal aspects of data, among
other things, see Chapter 9, “Business Models”.

WRITING A NEW API
Assuming the data you want to play with isn’t available or can’t be easily
mashed up or scraped using other existing tools and sources, perhaps you
want to create an entirely new source of information or services. Perhaps
you plan to assemble the data from free or licensed material you have and
process it. Or perhaps your Internet-connected device can populate this data!

To take you through the process of building your own API, we use an
example project, Clockodillo. Th is is an Internet of Th ings device that
Hakim built to help him use the Pomodoro time management technique
(www.pomodorotechnique.com/).

With the Pomodoro system you split your tasks into 25-minute chunks and
use a kitchen-timer to help track how long the task takes you, and to
encourage you to block out distractions during each 25-minute block.

11_9781118430620-ch07.indd 17711_9781118430620-ch07.indd 177 10/9/13 11:02 AM10/9/13 11:02 AM

178 Designing the Internet of Things

Clockodillo explores how the Internet of Th ings might help with that:
connecting the kitchen-timer to the Internet to make the tracking easier
while keeping the simplicity of the physical twist-to-set timer for starting the
clock and showing progress as it ticks down.

By the end of the chapter, you end up with the skeleton of an actual API that
the timer device connects to.

Although the process of designing a web application to be used on a browser
can mix up the actions that users will accomplish with the fl ows they will
take to navigate through the application, writing the back-end API makes
you think much more in terms of the data that you want to process.

As the legendary soft ware engineer Frederick P. Brooks, Jr. wrote:

Show me your fl owchart and conceal your tables, and I shall
continue to be mystifi ed. Show me your tables, and I won’t usually
need your fl owchart; it’ll be obvious.

—Th e Mythical Man-Month: Essays on Soft ware Engineering
(Addison-Wesley, 1975)

When you know what data you have, what actions can be taken on it, and
what data will be returned, the fl ows of your application become simple. Th is
is a great opportunity to think about programming without worrying (at
fi rst) about the user interface or interactions. Although this might sound
very diff erent from writing a web application, it is actually an ideal way to
start: by separating the business problem from the front end, you decouple
the model (core data structure) from the view (HTML/JavaScript) and
controller (widgets, form interaction, and so on). If you’ve programmed in
one of the popular MVC frameworks (Ruby on Rails, Django, Catalyst, and
so on), you already know the advantage of this approach.

Th e best news is, if you start designing an API in this way, you can easily add
a website aft erwards, as you will see in the upcoming “Going Further”
section.

CLOCKODILLO
As we saw earlier, Clockodillo is an Internet-connected task timer. Th e user
can set a dial to a number of minutes, and the timer ticks down until
completed. It also sends messages to an API server to let it know that a task
has been started, completed, or cancelled.

11_9781118430620-ch07.indd 17811_9781118430620-ch07.indd 178 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 179

A number of API interactions deal precisely with those features of the
physical device:

◾ Start a new timer
◾ Change the duration of an existing timer
◾ Mark a timer completed
◾ Cancel a timer

Some interactions with a timer data structure are too complicated to be
displayed on a device consisting mostly of a dial—for example, anything that
might require a display or a keyboard! Th ose could be done through an app
on your computer or phone instead.

◾ View and edit the timer’s name/description

And, naturally, the user may want to be able to see historical data:

◾ Previous timers, in a list
• Th eir name/description
• Th eir total time and whether they were cancelled

Assuming you plan to build more than just one device, you need to have
some form of identifying the device. We come back to this interesting topic
when we look at scaling up to production in Chapter 10. For now, assume
that each device will send some identifying token, such as a MAC address.
(As you saw in Chapter 3, this is a unique code that every networked
chip has.)

So the user will somehow identify himself with the server, aft er which all the
preceding actions will relate just to a given user ID.

SECURITY
Does it look as though we’re missing something? If you’re jumping up and
down shouting “What about security?” give yourself a pat on the back. How
important security is depends a lot on how sensitive the information being
passed is and whether it’s in anyone’s interest to compromise it. For Clocko-
dillo, perhaps a boss might want to double-check that employees are using
the timer. Or a competitor might want to check the descriptions of tasks to
spy what your company is working on. Or a (more disreputable) competitor
might want to disrupt and discredit the service by entering fake data.

11_9781118430620-ch07.indd 17911_9781118430620-ch07.indd 179 10/9/13 11:02 AM10/9/13 11:02 AM

180 Designing the Internet of Things

If the service deals with health or fi nancial information, it may be an even
more attractive target. Location information is also sensitive; burglars might
fi nd it convenient to know when you are out of the house.

Security is a really important concern, so you need to bear it in mind while
designing the API! But let’s start off with an idea of what you want to do
with it.

Task Inputs Outputs

1. Create a new timed task User, Timer duration Timer ID

2. Change duration of timed
task

User, Timer ID, New duration OK

3. Mark timer complete User, Timer ID OK

4. Cancel timer User, Timer ID OK

5. Describe the timed task User, Timer ID, Description OK

6. Get list of timers User List of Timer IDs

7. Get information about a
timer

User, Timer ID Description, Create
time, Status

Obviously, the request has to pass details to identify the user, which is the
problem of identity; that is, the application needs to know for which user to
create the timer so that the user can retrieve information about it later.

But the application should also authenticate that request. A password is
“good enough” authentication for something that isn’t hypersensitive.

So, looking at the preceding list, you can see that tasks 1–4 could be
requested by the physical timer device. To pass a description, display details
about a list of timers, or get information about them would require more
input and output capability than the timer will have!

But for tasks 1–4, how will the timer pass on the username and password?
Th e user could confi gure them with a computer, via USB. But doing so is
potentially complex and means that the device will need some persistent
storage; this suggests more work, a more powerful microcontroller, and
possibly an extra SD card storage reader for a lower-end controller.

One technique that is commonly used for microcontrollers is that they can
send a physical ID, commonly their MAC address (this is a unique ID

11_9781118430620-ch07.indd 18011_9781118430620-ch07.indd 180 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 181

assigned to every networked device or rather to their network interface). As
this is unique, it can be tied to a user.

Also, you have to consider the risks in sending the identifi cation or authenti-
cation data over the Internet—whether that’s a MAC address or username
and password. If you think back to the description of Internet routing in
Chapter 3, you know that the package with the request can be sent by all
kinds of routes. If the username and password are in “clear text”, they can be
read by anyone who is packet sniffi ng. Th e two main cases here are as follows:

◾ Someone who is targeting a specifi c user and has access to that
person’s wired or (unencrypted) wireless network. Th is attacker could
read the details and use them (to create fake timers or get information
about the user).

◾ Someone who has access to one of the intermediate nodes. Th is
person won’t be targeting a specifi c device but may be looking to see
what unencrypted data passes by, to see what will be a tempting target.

Of course, your Internet of Th ings device may not be a tempting target. We
hope, though, the word to add to the preceding sentence is “yet!” If your
device becomes popular, it may have competitors who would be delighted to
expose a security fl aw. Although a soft ware product can easily be updated to
handle this situation, the logistics with upgrading a hardware project are
much more complicated!

Even worse, if a soft ware password is compromised, a website can easily
provide a way of changing that password. But while a computer has a
monitor and keyboard to make that task easy, an Internet-connected device
may not. So you would need a way to confi gure the device to change its
password—for example, a web control panel hosted on the server or on the
device itself. Th is solution is trickier (and does require the machine to have
local storage to write the new password to).

One obvious solution to the problem of sending cleartext passwords would
be to encrypt the whole request, including the authentication details.
For a web API, you can simply do this by targeting https:// instead
of http://. It doesn’t require any further changes to your application code.
It is easy to set up most web servers to serve HTTPS, and we do this in the
sample code for this chapter.

Resolving this problem may be harder for the device. Encryption requires
solving very large equations and takes CPU and memory. Th e current
Arduino platform doesn’t have an HTTPS library, for example. While more
powerful microcontrollers, and no doubt future versions of Arduino will,

11_9781118430620-ch07.indd 18111_9781118430620-ch07.indd 181 10/9/13 11:02 AM10/9/13 11:02 AM

182 Designing the Internet of Things

you can easily imagine even smaller controllers in the future that have
similar limitations.

If there is any chance that your connected device could be used maliciously
by an attacker, then the ability to secure the communications should be a key
factor in deciding on the platform to use. It is unlikely that an attacker could
glean anything from the data being gathered by an air quality monitor, for
example, but if the data is a reasonable proxy for occupancy of your house or
if it can control items and so on, then you need to ensure that it is secure.

If you are defi ning your own API, there are cryptography libraries for
Arduino, so there’s scope for using them for a custom form of secure
communications. You need to do so carefully and with the help of a security
expert, if you take this approach.

Th e OAuth 1.0 protocol—used by services such as Twitter to allow third-
party applications to access your account without requiring your password—
is a good example of providing strong authentication without using HTTPS.
Th e content of the API call is still sent in the clear, so an attacker sniffi ng the
network traffi c would still be able to see what was happening, but he wouldn’t
be able to modify or replay the requests. To add encryption—preventing
people from watching what is going on—with OAuth 1.0, you would still
have to run it over HTTPS. Th e OAuth 1.0 guide has a useful discussion of
the issues it addresses, at http://hueniverse.com/oauth/guide/
security/.

As a compromise, to save complicating discussion of the API, for this
example we suggest insisting on username/password over HTTPS for any
requests done over the web but allowing a MAC address over HTTP for
requests 1-4 that will be sent by the timer.

Here’s a revised table; we also added some requests to add and check the
MAC address for a user and categorised the previous requests by the type of
resource they aff ect.

Task Auth Inputs Outputs

1. Create a new timed task MAC or User/Pass Timer
duration

Timer ID

2. Change duration of
timed task

MAC or User/Pass Timer ID,
New timer
duration

OK

3. Mark timer complete MAC or User/Pass Timer ID OK

4. Cancel timer MAC or User/Pass Timer ID OK

11_9781118430620-ch07.indd 18211_9781118430620-ch07.indd 182 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 183

Task Auth Inputs Outputs

5. Describe the timed task User/Pass Timer ID,
Description

OK

6. Get list of timers User/Pass List of Timer IDs

7. Get information about
a timer

User/Pass Timer ID Info about Timer

8. Register a device to a
user

User/Pass MAC
address

OK

9. Get details of the user’s
device

User/Pass MAC address

As you can see, the fi rst four options can be set by the device, but more
methods relate to the clients (website or native) than the device itself. Th is is
oft en the case: the device provides a number of functions that its inputs and
outputs are particularly well suited for, but a whole host of other functions to
support the data, control authentication, and present and edit it may require
a richer input device (perhaps another Th ing or a general-purpose device
such as a computer or phone).

IMPLEMENTING THE API
An API defi nes the messages that are sent from client to server and from
server to client. Ultimately, you can send data in whatever format you want,
but it is almost always better to use an existing standard because convenient
libraries will exist for both client and server to produce and understand the
required messages.

Here are a few of the most common standards that you should consider:

◾ Representational State Transfer (REST): Access a set of web URLs
like http://timer.roomofthings.com/timers/ or
http:://timer.roomofthings.com/timers/1234 using
HTTP methods such as GET and POST, but also PUT and DELETE. Th e
result is oft en XML or JSON but can oft en depend on the HTTP
content-type negotiation mechanisms.

◾ JSON-RPC: Access a single web URL like http://timer.
roomofthings.com/api/, passing a JSON string such
as {‘method’:’update’, ‘params’: [{‘timer-id’:1234,
‘description’:’Writing API chapter for book’}],
‘id’:12}. Th e return value would also be in JSON,
like {‘result’:’OK’, ‘error’:null, ‘id’:12}.

11_9781118430620-ch07.indd 18311_9781118430620-ch07.indd 183 10/9/13 11:02 AM10/9/13 11:02 AM

184 Designing the Internet of Things

◾ XML-RPC: Th is standard is just like JSON-RPC but uses XML instead
of JSON.

◾ Simple Object Access Protocol (SOAP): Th is standard uses XML for
transport like XML-RPC but provides additional layers of functionality,
which may be useful for very complicated systems.

Jason and the Remote Procedure Calls
A brief word on some of the acronyms we’re throwing at you here. None of
them are vital to understand, but a brief description will no doubt help.

 JavaScript Object Notation (JSON), pronounced “Jason”, is a way of
formatting data so that it can be easily exchanged between different
systems. As the name suggests, it grew from the JavaScript programming
language but these days is just as easy to work with in other languages
such as Ruby and Python.

 At its core it is a series of properties, in the form:

“property name”: “property value”

 The property values can be a string, a number, a Boolean value (true or
false), or another JSON object or array (a sequence of objects).

 Individual properties are separated from each other with commas, and a
set of different properties can be grouped into an object with { }. Arrays
(a sequence of the same sort of object) are grouped with [].

 For example, an array of two objects — each with a name and an age —
would look like this:

[

 { “name”: “Object 1”, “age”: 34 },

 { “name”: “Second object”, “age”: 45 }

]

 For full details see the JSON website, http://json.org/.

 Remote Procedure Call (RPC) is a term to describe ways of calling
programming code which isn’t on the same computer as the code you are
writing. The web APIs we have been discussing so far are a form of RPC.
However, because the “web” part of that description better explains how
the remote communication is done, the RPC moniker tends not to be used.

 Extensible Markup Language (XML), for the purposes we discuss in this
book, can be thought of as an alternative to JSON. It uses < > to demark
its elements and tends to be much more verbose than the equivalent JSON
would be. As a result, it is less well suited for resource-constrained systems
such as Internet of Things devices, so we recommend using JSON if you
have the choice. XML has a common parentage with HTML, so if you’re
familiar with that, XML won’t be unfamiliar. XML is defi ned by the World
Wide Web Consortium (W3C), who also look after HTML, CSS, and other
web standards. The XML section of their website (www.w3.org/
standards/xml/) is a good starting point to learn more.

11_9781118430620-ch07.indd 18411_9781118430620-ch07.indd 184 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 185

We recommend using REST, but you may have reasons to use another
standard. For example, if you are trying to replicate the interface of another
XML-RPC service, or you are already familiar with SOAP from other
projects, that may well trump the other factors.

For this chapter, we use a REST API because it is popular, well supported,
and simple to interact with for a limited microcontroller. Th e design
considerations we describe mostly apply for all the standards, however.

REST has some disadvantages, too. For example, some of the HTTP
methods aren’t well supported by every client or, indeed, server. In particu-
lar, web browsers only natively support GET and POST, which can compli-
cate things when interacting with REST from a web page.

Th ere is also a lot of disagreement over best practices. REST experts may not
always look at the most pragmatic solution favourably. Th is book isn’t a
resource on REST as such but aims to provide a fl avour of how to use it; we
try to point out where we’re making a decision out of expediency.

In REST, you attach each resource to a URL and act on that. For example, to
interact with a timer, you might speak to /timers/1234 for a timer with ID
1234. To create an entirely new timer, you would talk to /timers. As you can
see, you can use diff erent “methods” depending on whether you want
to GET a resource, POST it onto the server in the fi rst place, PUT an update
to it, or DELETE it from the server.

Authorization and Session Management
In the previous table, we suggested passing username and password each time.
That isn’t really a good idea. If an attacker compromised the transaction, then
she would have access to both. It is often a much better idea to perform a single
login and then send some kind of token back with subsequent requests. This
approach could be limited in terms of time or of session. In the case of REST, we
are trying to use HTTP functionality as richly as possible. It turns out that “some
kind of token” is a session cookie. Most servers and clients handle cookies
automatically, so on subsequent requests only the cookie needs to be checked.
Although that sounds like good news, at present, the Arduino HttpClient libraries
don’t support cookies. This issue will no doubt be resolved soon or worked
around (by parsing and setting the HTTP headers manually). But for this timer
example, you can continue to pass the MAC address for every request.

11_9781118430620-ch07.indd 18511_9781118430620-ch07.indd 185 10/9/13 11:02 AM10/9/13 11:02 AM

186 Designing the Internet of Things

So the REST API will fi nally look like this:

Resource URL Method Auth Parameters Outputs

1. /timers POST MAC or
Cookie

Timer
duration

Timer ID

2. /timers/:id/
duration

PUT MAC or
Cookie

Timer
duration

OK

3. /timers/:id/
complete

PUT MAC or
Cookie

OK

4. /timers/:id DELETE MAC or
Cookie

OK

5. /timers/:id/
description

PUT Cookie Description OK

6. /timers GET Cookie List of Timer IDs

7. /timers/:id GET Cookie Info about Timer

8. /user/device PUT Cookie MAC
address

OK

9. /user/device GET Cookie MAC address

10. /login POST User/Pass User/Pass Cookie + OK

11. /user POST User/Pass Cookie + OK

All the preceding work is vital to build an idea about how your Internet of
Th ings device and service will interact. Actually, programming it is beyond
the scope of this book, although we do present a rough partial implementa-
tion as an example. Th ere is no single “best” solution for writing the code,
and a lot of the choices will depend on your programming specializations, or
if you are hiring a developer to do the back-end work, whether you can get
someone who is good.

Following are some of the parameters you should consider when deciding
on a platform for your web back end:

◾ What do you already know (if you are planning to develop the code
yourself)?

◾ What is the local/Internet recruiting market like (if you are planning to
outsource)?

11_9781118430620-ch07.indd 18611_9781118430620-ch07.indd 186 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 187

◾ Is the language thriving? Is it actively developed? Does it have a healthy
community (or commercial support)? Is there a rich ecosystem of
libraries available?

We are deliberately not mentioning variables such as “power” or “speed”.
Almost any language that fulfi ls the most important criteria here is powerful
enough to get the job done. When writing a web app, you probably care
more about speed of development, robustness, and maintainability than
power or speed. If you scale up enough that you have to rewrite your
infrastructure in Erlang or critical subsystems in C++, that is a good
problem to have!

If you are dipping your toes into web programming and don’t have a fi rm
idea about what platform to use already, you might want to consider a
dynamic language, such as Ruby, Perl, Python, JavaScript (Node.js), or PHP.
Th ey are relatively simple to learn, well supported by web hosts, and have a
host of libraries to help get the code written.

Th ose of you with experience of the Microsoft developer ecosystem may
want to use C# or ASP.net. If you have skills with the JVM, Java or Scala
would be a fi ne choice. If you’re a functional programmer, Clojure, Erlang,
or Haskell will get the job done.

Next, we look at an example of the back-end code in Perl, using the Dancer
framework. Th is “lightweight” web framework uses a mindset similar to that
of Ruby’s Sinatra. We cover only the most interesting parts here, but you can
look at the full example at https://github.com/osfameron/
aBookOfThings-examples/, along with other code discussed in the
book. (All the code on this site is open source, so feel free to fork it and
make contributions, perhaps translations of the code, into your favourite
programming language.)

Back-end Code in Perl
Perl has advantages and disadvantages just like all the other languages we
mention. It is actively developed, has a great ecosystem of libraries on CPAN,
and is powerful enough to serve large sites if the system is architected well. Its
disadvantages (some areas have thorny syntax, the job market is patchy in
some locations) are overweighed, in our case, by the fact that it’s what Hakim
knows best.

11_9781118430620-ch07.indd 18711_9781118430620-ch07.indd 187 10/9/13 11:02 AM10/9/13 11:02 AM

188 Designing the Internet of Things

Aft er a small amount of boilerplate, the code mostly consists of handlers for
the diff erent API calls. Each handler declares the HTTP verb (GET, POST,
PUT, DELETE) and the route that it handles. Parameters can be passed
within the route, marked by a colon (:id, for example), or as part of the
HTTP request.

#1 Create a new timed task

post “/timers.:format” => sub {

 my $user = require_user;

 # ‘require_user’ wants a session cookie

 # OR a valid MAC address.

 my $duration = param ‘duration’

 or return status_bad_request(‘No duration passed’);

 my $timer = schema->resultset(‘Timer’)->create({

 user_id => $user->id,

 duration => $duration,

 status => ‘O’, # open

 });

 return status_created({

 status=>’ok’,

 id => $timer->id,

 });

};

#2 Change duration of timed task

put “/timers/:id/duration.:format” => {

 my $user = require_user;

 my $duration = param ‘duration’

 or return update_complete;

 my $timer = require_open_timer;

 # a timer is open if it’s in ‘O’ status

 ## NB: the following calculation has to extend the time

 ## as of now

 my $start_datetime = $timer->start_datetime;

 my $new_end_time = DateTime->now->add(

 minutes => $duration);

 my $total_duration = ($new_end_time - $start_datetime)

 ->in_units(‘minutes’);

 $timer->update({ duration => $total_duration });

 return status_ok({

 ok => 1,

 message => ‘Timer length updated’,

11_9781118430620-ch07.indd 18811_9781118430620-ch07.indd 188 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 189

 });

};

#3 Mark timer complete

put “/timers/:id/complete.:format” => sub {

 my $user = require_user;

 my $timer = require_open_timer;

 $timer->update({ status => ‘C’ });

 return status_ok({

 ok => 1,

 message => ‘Timer marked complete’,

 });

};

#4 Cancel timer

del “/timers/:id.:format” => sub {

 my $user = require_user;

 my $timer = require_timer;

 $timer->update({ status => ‘D’ });

 return status_ok({

 status => ‘ok’,

 });

};

#5 Describe the timed task

put “/timers/:id/description.:format” => sub {

 my $user = require_session;

 # ‘require_user’ demands a session cookie!

 my $timer = require_open_timer;

 my $description = param ‘description’;

 $timer->update({ description => $description });

 return status_ok({

 ok => 1,

 message => ‘Description updated’,

 });

};

#6 Get list of timers

get “/timers.:format” => sub {

 my $user = require_session;

11_9781118430620-ch07.indd 18911_9781118430620-ch07.indd 189 10/9/13 11:02 AM10/9/13 11:02 AM

190 Designing the Internet of Things

 return status_ok({

 status => ‘ok’,

 timers => [map $_->serialize, $user->timers],

 });

};

#7 Get information about a timer

get “/timers/:id.:format” => sub {

 my $user = require_session;

 my $timer = require_timer;

 return status_ok({

 status => ‘ok’,

 timer => $timer->serialize,

 });

};

#8 TODO Set the user’s device MAC address

#9 TODO Get the user’s device MAC address

#10 Login

post “/login.:format” => sub {

 my $username = param ‘user’;

 my $password = param ‘pass’;

 my $user = schema->resultset(‘User’)->find({

 email => $username });

 if ($user && $user->check_password($password)) {

 session user_id => $user->id;

 return status_ok({

 status=>’ok’,

 message=>’Login OK’,

 });

 }

 else {

 return status_bad_request(“Bad username or password”);

 }

};

#11 Register the user

post “/user.:format” => sub {

 my $username = param ‘user’;

 my $password = param ‘pass’;

 if (schema->resultset(‘User’)->find({ email => $username }))

 {

11_9781118430620-ch07.indd 19011_9781118430620-ch07.indd 190 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 191

 return status_bad_request(“Duplicate user”);

 }

 else {

 my $user = schema->resultset(‘User’)->create({

 email => $username,

 password => $password,

 });

 return status_created({

 status=>’ok’,

 id => $user->id,

 });

 }

};

Note how all the requests end with .:format. Th is means that you could
post to http://api.roomofthings.com/timers.json to get
the result back from the server in JSON format or to http://api.
roomofthings.com/timers.txt to get back a simple string, optimised
for easy parsing by a microcontroller.

Th is code calls some functions defi ned by Dancer and Dancer::Plugin::REST,
such as status_ok and param. Th e other things we had to write, omitted
from the preceding listing, are as follows:

◾ Th e database defi nition (simply creating two tables, users and tim-
ers) and the code to connect them to Perl using DBIx::Class (an
ORM layer, similar to ActiveRecord or LINQ)

◾ Some utility functions for user management: require_user and
require_session (which distinguish between the “MAC or Cookie”
and “Cookie” cases)

◾ Similar utility functions require_timer and require_open_
timer to get the timer object from the database

◾ Basic confi guration of Dancer/PSGI, to make the application easy to
test and deploy

USING CURL TO TEST
While you’re developing the API, and aft erwards, to test it and show it off , you
need to have a way to interact with it. You could create the client to interface
with it at the same time (either an application on the web or computer, or the
code to make your Internet of Th ings project connect to it). In this case, while
we were developing Clockodillo, the API was ready long before the physical
device. Luckily, many tools can interact with APIs, and one very useful one
is curl, a command-line tool for transferring all kinds of data, including
HTTP.

11_9781118430620-ch07.indd 19111_9781118430620-ch07.indd 191 10/9/13 11:02 AM10/9/13 11:02 AM

192 Designing the Internet of Things

You can easily issue GET requests by simply calling curl http://timer.
roomofthings.com/timers.json, for example. But, of course, the API
is protected with logins. Luckily, curl takes this in its stride! Here is an
example of interacting with it on a development server:

the -F flag makes curl POST the request

$ curl http://localhost:3000/user.json \

 -F user=hakim -F pass=secret

{

 “status” : “ok”,

 “id” : 2

}

curl simply makes an HTTP request and prints out the result to a terminal.
Because the command line requests JSON, the result comes back in that
format, with a dictionary of status and id values.

Here are some more examples:

Check that login rejects a bad password

$ curl http://localhost:3000/login.json \

 -F user=hakim -F password=wrong

{

 “error” : “Bad username or password”

}

save login session to our “cookie jar”

$ curl http://localhost:3000/login.json -c cookie.jar \

 -F user=hakim -F pass=secret

{

 “status” : “ok”,

 “message” : “Login OK”

}

use that cookie to login, and create a 25 minute timer

$ curl http://localhost:3000/timers.json -b cookie.jar \

 -F duration=25

{

 “status” : “ok”,

 “id” : 1

}

change the request to a PUT

$ curl http://localhost:3000/timer/1/duration.json \

 -X PUT -b cookie.jar -F duration=12

{

 “ok” : 1,

 “message” : “Timer length updated”

11_9781118430620-ch07.indd 19211_9781118430620-ch07.indd 192 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 193

}

GET the information about that timer

$ curl http://localhost:3000/timers/1.json -b cookie.jar

{

 “status” : “ok”,

 “timer” : {

 “start_datetime” : “2012-05-21 19:30:40”,

 “status” : “O”,

 “id” : 1,

 “user_id” : 1,

 “duration” : 12,

 “description” : null,

 “end_datetime” : null

 }

}

DELETE (cancel) it

$ curl http://localhost:3000/timer/1.json \

 -X DELETE -b cookie.jar

{

 “status” : “ok”

}

GET it again (note how the status is now ‘D’ as it’s deleted)

$ curl -b cookie.jar http://localhost:3000/timers/1.json

{

 “status” : “ok”,

 “timer” : {

 “start_datetime” : “2012-05-21 19:30:40”,

 “status” : “D”,

 “id” : 1,

 “user_id” : 1,

 “duration” : 12,

 “description” : null,

 “end_datetime” : null

 }

}

Although the preceding examples may look a little arcane if you aren’t
familiar with code, we hope they are understandable enough for you to get a
feel for what is happening. Th ey exercise the main methods in the API and
show the sorts of basic sanity tests that you would perform to make sure
your code was functioning in the way you anticipated. Th at lets you go on to
develop the device code knowing that the service it will be talking to has a
reasonable foundation.

11_9781118430620-ch07.indd 19311_9781118430620-ch07.indd 193 10/9/13 11:02 AM10/9/13 11:02 AM

194 Designing the Internet of Things

GOING FURTHER
Th e preceding sketch is missing a few tweaks before it can become a production-
ready API. Th e timer duration changing is rudimentary. Th e code doesn’t
handle the case in which the timer should already have expired by the time the
user tries to change it. Perhaps the data structure should also be expanded to
store more history about a single timer (for example, if the user changes the
time repeatedly, the server could store each change rather than only the total
duration).

Th is example also has a number of architectural features that we didn’t
examine at all.

API Rate Limiting
If the service becomes popular, managing the number of connections to the
site becomes critical. Setting a maximum number of calls per day or per
hour or per minute might be useful. You could do this by setting a counter
for each period that you want to limit. Th en the authentication process could
simply increment these counters and fail if the count is above a defi ned
threshold. Th e counters could be reset to 0 in a scheduled cron job.

While a soft ware application can easily warn users that their usage limit has
been exceeded and they should try later, if a physical device suddenly fails,
users might assume that it is broken! Solutions to this problem might
include simply not applying the limit to calls made by a device.

OAuth for Authenticating with Other Services
While OAuth may not (currently) be the best solution for connecting with a
microcontroller (at present, there are no accepted libraries for Arduino),
there is no reason why the back-end service should not accept OAuth to
allow hooks to services like Twitter, music discovery site last.fm, or the web
automation of If Th is Th en Th at.

Interaction via HTML
Th e API currently serialises the output only in JSON, XML, and Text formats.
You might also want to connect from a web browser. When we fi rst looked at
the API design, we split up tasks into those that the device could do and then
the rest. Th e latter could easily be done in a browser-based application. Of
course, the users won’t want to make raw API calls, and the fl ows taken to
carry out an action may well be slightly diff erent, but the basic data being

11_9781118430620-ch07.indd 19411_9781118430620-ch07.indd 194 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 195

manipulated is the same: Th e calls we’ve looked at would form the heart of the
web application, just as they do the experience with the physical device.

Note that not every Internet of Th ings product needs a browser application.
Perhaps the API is all you need, with maybe a static home page containing
some documentation about how to call the API.

In the case of Clockodillo, however, we do want to have a set of web pages to
interact with: Users should be able to look at their timers, assign descrip-
tions, and so on.

It would be easy to set up specifi c route handlers just for the HTML
application, for example:

post ‘/login.html’ => sub { ... }

But a more elegant approach might be to use exactly the same code as before
but with an HTML option. Instead of returning a JSON string, this code
might inject the data into an HTML template. Simply calling, for example,
/timers/1234.html instead of /timers/1234.json would then get a view of that
data targeted at a human rather than a connected device.

Drawbacks
Although web browsers do speak HTTP, they don’t commonly communicate
in all the methods that we’ve discussed. In particular, they tend to support
the following:

◾ GET: Used to open pages and click on links to other pages. You can link
to http://timer.roomofthings.com/timers/1234.html and
get the HTML version of the API call (using the “get_timer” template).

◾ POST: Used when submitting a form or to upload fi les. To post a timer,
you could create a web form like the following:
<form method=”POST” action=”/timers.html”>

 <input type=”text” name=”duration”>

 <input type=”submit” value=”Create a new timer!”>

</form>

 Th is form calls the POST action and returns the appropriate HTML.

But what about the lovingly craft ed PUT and DELETE methods? Web
browsers don’t commonly support those…but never fear! One option is to
make these calls in JavaScript, which can indeed support them. Another is to

11_9781118430620-ch07.indd 19511_9781118430620-ch07.indd 195 10/9/13 11:02 AM10/9/13 11:02 AM

196 Designing the Internet of Things

“tunnel” the requests through a POST. Th ere is a convention in Perl to use a
fi eld called x-tunneled-method, which you could implement like this:

<form method=”POST”

 action=”/timer.html?x-tunneled-method=DELETE”>

 <input type=”hidden” name=”id” value=”1234”>

 <input type=”submit” value=”Cancel this timer!”>

</form>

Now you just need to convince your web framework to accept this POST as
if it were actually a DELETE. In the example app using Dancer, we use the
module Plack::Middleware::MethodOverride to do this in a single
line (https://metacpan.org/module/Plack::Middleware::
MethodOverride). Other frameworks will have similar extensions.

Alternatively, you could write the web application in an entirely diff erent
code base and interact with the main service through the API. Th is can be a
winning combination because it forces the human-facing code to use (and
therefore exercise) the same API that the device uses, increasing the amount
of testing it receives and preventing the device-facing code from being
neglected. Whether you decide to follow that path would depend very much
on your team’s skill set.

Designing a Web Application for Humans
However you choose to implement it, as well as the text-based API we’ve
spent most of the chapter working on, you can easily also have an elegant
and well-designed application for humans to interact with.

Because numerous excellent books are available on designing a web
application, we don’t look at this topic in any great detail, but you might be
interested in looking at some examples to think about the design process.

For example, the following fi gure shows a static login page, to be served
by GET. Th e API didn’t even specify a GET action, as it was superfl uous for a
computer. Th is page is entirely for the convenience of a human. All the labels
like “Your email address” and the help text like “Remember your password is
case sensitive” are purely there to guide the user. Th e logo, as well as proving
that we are really not designers, is there as a branding and visual look and
feel for the site.

11_9781118430620-ch07.indd 19611_9781118430620-ch07.indd 196 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 197

The human-facing Clockodillo login page.

Th at’s a simple example, but the following fi gure shows an even more
extreme change. Th e list of timers, instead of being a JSON string containing
a raw data structure, is highly formatted. Th e dates are formatted for
humans. Th e duration of the timer and the status (in progress, completed,
abandoned) are visualised with colours, progress bars, and a duration
“badge”. Th e page also links to other actions: Th e “Edit” button opens a page
that allows access to the actions that change description, and so on. Th e
menu bar at the top links to other functions to help users fl ow through the
tasks they want to carry out.

The human-facing list of timers.

11_9781118430620-ch07.indd 19711_9781118430620-ch07.indd 197 10/9/13 11:02 AM10/9/13 11:02 AM

198 Designing the Internet of Things

Finally, as we were preparing this mockup, we added a “Search for a specifi c
timer” input. Th is hadn’t even occurred to us when preparing the API (the
timer device doesn’t need it) but seemed obvious as soon as we thought
about things from the viewpoint of a human user. Looking at your product
from both contrasting perspectives (machine and human) will make it
stronger and better designed.

REAL-TIME REACTIONS
We’ve looked at a traditional sort of API, where you make an HTTP request
to the server and receive a response. Th is method has some disadvantages if
you want a very responsive system. To establish an HTTP request requires
several round-trips to the server. Th ere is the TCP “three-step handshake”
consisting of a SYN (synchronise) request from the client, a SYN-ACK from
the server to “acknowledge” the request, and fi nally an ACK from the client.
Although this process can be near instantaneous, it could also take a
noticeable amount of time.

Th e time taken to establish the connection may or may not matter. Any of
the most powerful boards is able to run the connection in the background
and respond to it when it’s completed. For a bare-bones board such as the
Arduino, the current Ethernet/HTTP shields and libraries tend to block
during the connection, which means that during that time, the microcon-
troller can’t easily do any other processing (although it is possible to work
around this issue using hardware interrupts, doing so poses certain restric-
tions and complications). Because the connection is usually made on a
“breakout board” with its own processor, there is no reason that the
connection couldn’t happen in parallel, without blocking the main thread,
so this restriction may well be lift ed in future.

If you want to perform an action the instant that something happens on
your board, you may have to factor in the connection time. If the server has
to perform an action immediately, that “immediately” could be nearly a
minute later, depending on the connection time. For example, with the task
timer example, you might want to register the exact start time from when
the user released the dial, but you would actually register that time plus the
time of connection.

We look at two options here: polling and the so-called “Comet” technologies.
And then, in the section on non-HTTP protocols, MQTT, XMPP, and CoAP
off er alternative solutions.

11_9781118430620-ch07.indd 19811_9781118430620-ch07.indd 198 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 199

POLLING
If you want the device or another client to respond immediately, how do you
do that? You don’t know when the event you want to respond to will happen,
so you can’t make the request to coincide with the data becoming available.
Consider these two cases:

◾ Th e WhereDial should start to turn to “Work” the moment that the user
has checked into his offi ce.

◾ Th e moment that the task timer starts, the client on the user’s computer
should respond, off ering the opportunity to type a description of the
task.

Th e traditional way of handling this situation using HTTP API requests was
to make requests at regular intervals. Th is is called polling. You might make a
call every minute to check whether new data is available for you. However,
this means that you can’t start to respond until the poll returns. So this might
mean a delay of (in this example) one minute plus the time to establish the
HTTP connection. You could make this quicker, polling every 10 seconds,
for example. But this would put load on the following:

◾ Th e server: If the device takes off , and there are thousands of devices,
each of them polling regularly, you will have to scale up to that load.

◾ Th e client: Th is is especially important if, as per the earlier Arduino
example, the microcontroller blocks during each connect!

COMET
Comet is an umbrella name for a set of technologies developed to get around
the ineffi ciencies of polling. As with many technologies, many of them were
developed before the “brand” of Comet was invented; however, having a
name to express the ideas is useful to help discuss and exchange ideas and
push the technology forward.

Long Polling (Unidirectional)
Th e fi rst important development was “long polling”, which starts off with the
client making a polling request as usual. However, unlike a normal poll
request, in which the server immediately responds with an answer, even if
that answer is “nothing to report”, the long poll waits until there is some-
thing to say. Th is means that the server must regularly send a keep-alive to
the client to prevent the Internet of Th ings device or web page from
concluding that the server has simply timed out.

11_9781118430620-ch07.indd 19911_9781118430620-ch07.indd 199 10/9/13 11:02 AM10/9/13 11:02 AM

200 Designing the Internet of Things

Long polling would be ideal for the case of WhereDial: the dial requests
to know when the next change of a user’s location will be. As soon as
WhereDial receives the request, it moves the dial and issues a new long poll
request. Of course, if the connection drops (for example, if the server stops
sending keep-alive messages), the client can also make a new request.

However, it isn’t ideal for the task timer, with which you may want to send
messages from the timer quickly, as well as receive them from the server.
Although you can send a message, you have to establish a connection to do
so. Hence, you can think of long polling as unidirectional.

Multipart XMLHttpRequest (MXHR) (Unidirectional)
When building web applications, it is common to use a JavaScript API called
XMLHttpRequest to communicate with the web server without requiring a
full new page load. From the web server’s point of view, these requests are no
diff erent from any other HTTP request, but because the intended recipient is
some client-side code, conventions and support libraries (both client- and
server-side) have developed to address this method of interaction specifi cally.

Many browsers support a multipart/x-mixed-replace content type,
which allows the server to send subsequent versions of a document via XHR.
Note that XMLHttpRequest is a misnomer because there’s no requirement to
actually use XML at all. Using this content type is perhaps more sophisti-
cated if you want to be able to receive multiple messages from the server.

It is perfectly possible to simply long poll and create a new request on
breaking the old one, but this means that you might miss a message while
you’re establishing the connection. In the example of WhereDial, this is
unlikely; you’re unlikely to change location fi rst to Home and then to Work
in quick succession. However, for an Internet of Th ings device such as
Adrian’s Xively meter, which tries to show the state of a Xively feed in real
time, being able to respond to changes from the server almost immediately
is the essential purpose of the device.

HTML5 WebSockets (Bidirectional)
In Chapter 3 you saw how the HTTP protocol used in web services sits atop
the TCP protocol. Traditionally, the API used to talk directly to the TCP layer
is known as the sockets API. When the web community was looking to provide
similar capabilities at the HTTP layer, they called the solution WebSockets.

Although WebSockets are currently a working draft in the HTML5 spec,
they seem to have traction in modern browsers, servers, and other clients.

11_9781118430620-ch07.indd 20011_9781118430620-ch07.indd 200 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 201

For example, there is a (partial) implementation for the Arduino platform
(https://github.com/krohling/ArduinoWebsocketClient).

WebSockets have the benefi t of being bidirectional. You can consider them
like a full Unix socket handle that the client can write requests to and read
responses from.

Th is might well be the ideal technology for the task timer. Aft er a socket is
established, the timer can simply send information down it about tasks being
started, modifi ed, or cancelled, and can read information about changes
made in soft ware, too.

Because WebSockets are new and push the HTTP protocol in a
slightly unorthodox direction, they are known to have some issues
with proxy servers. Th is situation should change as the proxies
currently broken in this respect are fi xed to be aware of WebSockets.
Th is may be an issue with your system’s architecture; see the later
section on “Scaling”.

Implementations
Th e options described in the preceding section seemed to us to have most
traction currently; however, as a fast-changing area with no absolute
consensus as yet, the actual details of transports and limitations are bound to
change. It is worth paying attention to these transports as they develop. Th e
Wikipedia page on Comet (http://en.wikipedia.org/wiki/
Comet_(programming)) is a useful starting point for tracking the current
state of play.

Let’s look at support for these techniques on the three main platforms that
you may need to consider for an Internet of Th ings application: the browser
web app (if applicable), the microcontroller itself, and the server application.

On the browser side, it is oft en possible to abstract the actual transport using
a library which chooses which method to connect to the server. For example,
it might use WebSockets if available; otherwise, it will fall back to MXHR or
long polling. Th is capability is useful because each web browser currently
has varying levels of support for the diff erent techniques. Th ere are well-
known Comet libraries for jQuery and for Dojo.

In addition, many web servers have abstractions to support Comet tech-
niques. Web::Hippie::Pipe provides a unifi ed bidirectional abstraction
for Perl web servers such as Twiggy, again using WebSockets if available,

11_9781118430620-ch07.indd 20111_9781118430620-ch07.indd 201 10/9/13 11:02 AM10/9/13 11:02 AM

202 Designing the Internet of Things

otherwise MXHR or long polling. You can fi nd similar abstractions
for node.js (JavaScript), Thin (Rails), jetty (Java), and so on.

Th ere are also libraries for the microcontroller; however, they tend to support
only one scheme. For example, several dedicated WebSockets libraries are
available for Arduino. In fact, the fallback to diff erent methods of interchang-
ing data aren’t really needed on the Arduino. Unlike the case of a desktop
web app, with Arduino you don’t have to worry about the users having
diff erent browsers because you’ll be providing the fi rmware for the device.

Scaling
An important consideration is that all these Comet techniques require the
client to have a long-term connection with the server. For a single client, this
is trivial. But if there are many clients, the server has to maintain a connec-
tion with each of them. If you run a server with multiple threads or pro-
cesses, you eff ectively have an instance of the server for each client. As each
thread or process will consume system resources, such as memory, this
doesn’t scale to many clients.

Instead, you might want to use an asynchronous web server, which looks at
each client connection in turn and services it when there is new input or
output. If the server can service each client quickly, this approach can scale
up to tens of thousands of clients easily. Th ere is a problem that each process
on a typical Unix server has a maximum number of sockets, so you are
restricted to that number of simultaneous clients. Th is, of course, is a good
problem to have! When you hit that wall, you can look at load-balancing and
other techniques that a good systems team will be able to apply to scale up
the load.

You also might be able to let your front-end proxy (Varnish or similar) do
some of the juggling of persistent client connections.

OTHER PROTOCOLS
As you have seen, although HTTP is an extremely popular protocol on the
Internet, it isn’t ideally suited to all situations. Rather than work around its
limitations with one of the preceding solutions, another option—if you have
control of both ends of the connection—is to use a diff erent protocol
completely.

Th ere are plenty of protocols to choose from, but we will give a brief rundown
of some of the options better suited to Internet of Th ings applications.

11_9781118430620-ch07.indd 20211_9781118430620-ch07.indd 202 10/9/13 11:02 AM10/9/13 11:02 AM

Chapter 7: Prototyping Online Components 203

MQ TELEMETRY TRANSPORT
MQTT (http://mqtt.org) is a lightweight messaging protocol, designed
specifi cally for scenarios where network bandwidth is limited or a small
code footprint is desired. It was developed initially by IBM but has since
been published as an open standard, and a number of implementations, both
open and closed source, are available, together with libraries for many
diff erent languages.

Rather than the client/server model of HTTP, MQTT uses a publish/
subscribe mechanism for exchanging messages via a message broker. Rather
than send messages to a pre-defi ned set of recipients, senders publish
messages to a specifi c topic on the message broker. Recipients subscribe to
whichever topics interest them, and whenever a new message is published
on that topic, the message broker delivers it to all interested recipients. Th is
makes it much easier to do one-to-many messaging, and also breaks the
tight coupling between the client and server that exists in HTTP.

A sister protocol, MQTT for Sensors (MQTT-S), is also available for
extremely constrained platforms or networks where TCP isn’t available,
allowing MQTT’s reach to extend to sensor networks such as ZigBee.

EXTENSIBLE MESSAGING AND PRESENCE PROTOCOL
Another messaging solution is the Extensible Messaging and Presence
Protocol, or XMPP (http://xmpp.org). XMPP grew from the Jabber
instant messaging system and so has broad support as a general protocol on
the Internet. Th is is both a blessing and a curse: it is well understood and
widely deployed, but because it wasn’t designed explicitly for use in
embedded applications, it uses XML to format the messages. Th is choice of
XML makes the messaging relatively verbose, which could preclude it as an
option for RAM-constrained microcontrollers.

CONSTRAINED APPLICATION PROTOCOL

Th e Constrained Application Protocol (CoAP) is designed to solve the same
classes of problems as HTTP but, like MQTT-S, for networks without TCP.
Th ere are proposals for running CoAP over UDP, SMS mobile phone
messaging, and integration with 6LoWPAN. CoAP draws many of its design
features from HTTP and has a defi ned mechanism to proxies to allow
mapping from one protocol to the other. At the time of this writing, the
protocol is going through fi nal stages of becoming a defi ned standard, with

11_9781118430620-ch07.indd 20311_9781118430620-ch07.indd 203 10/9/13 11:02 AM10/9/13 11:02 AM

204 Designing the Internet of Things

the work being coordinated by the Internet Engineering Task Force Con-
strained RESTful Environments Working Group.

SUMMARY
Th is chapter took a good look at the network side of the Internet of Th ings.
We looked at how to interact with existing services, either through published
APIs or via web scraping, and then worked through an example to see how
to create something completely new if the need arose.

Together with the previous two chapters, you will now have a good feel for
the breadth of work required to build an entire Internet of Th ings prototype.
Th ere is more work to do to take it into production, but you will see that in
later chapters. If you are just planning to build something to make your own
life easier or more fun, you should be well placed to get cracking.

Th e next chapter takes us back to the device side of the equation, with a
more detailed exploration of the techniques you will need to write code for
an embedded system. It explains some of the ways that embedded coding
diff ers from standard desktop or server programming, with tips on how to
approach it and how to investigate when things don’t quite go to plan.

11_9781118430620-ch07.indd 20411_9781118430620-ch07.indd 204 10/9/13 11:02 AM10/9/13 11:02 AM

